A Real-Time Opponent Modeling System for Rush Football
نویسندگان
چکیده
One drawback with using plan recognition in adversarial games is that often players must commit to a plan before it is possible to infer the opponent’s intentions. In such cases, it is valuable to couple plan recognition with plan repair, particularly in multi-agent domains where complete replanning is not computationally feasible. This paper presents a method for learning plan repair policies in realtime using Upper Confidence Bounds applied to Trees (UCT). We demonstrate how these policies can be coupled with plan recognition in an American football game (Rush 2008) to create an autonomous offensive team capable of responding to unexpected changes in defensive strategy. Our realtime version of UCT learns play modifications that result in a significantly higher average yardage and fewer interceptions than either the baseline game or domain-specific heuristics. Although it is possible to use the actual game simulator to measure reward offline, to execute UCT in real-time demands a different approach; here we describe two modules for reusing data from offline UCT searches to learn accurate state and reward estimators.
منابع مشابه
Exploiting Opponent Modeling for Learning in Multi-Agent Adversarial Games
An issue with learning effective policies in multi-agent adversarial games is that the size of the search space can be prohibitively large when the actions of both teammates and opponents are considered simultaneously. Opponent modeling, predicting an opponent’s actions in advance of execution, is one approach for selecting actions in adversarial settings, but it is often performed in an ad hoc...
متن کاملImproving Offensive Performance Through Opponent Modeling
Although in theory opponent modeling can be useful in any adversarial domain, in practice it is both difficult to do accurately and to use effectively to improve game play. In this paper, we present an approach for online opponent modeling and illustrate how it can be used to improve offensive performance in the Rush 2008 football game. In football, team behaviors have an observable spatio-temp...
متن کاملRobust Opponent Modeling in Real-Time Strategy Games using Bayesian Networks
Opponent modeling is a key challenge in Real-Time Strategy (RTS) games as the environment is adversarial in these games, and the player cannot predict the future actions of her opponent. Additionally, the environment is partially observable due to the fog of war. In this paper, we propose an opponent model which is robust to the observation noise existing due to the fog of war. In order to cope...
متن کاملOpponent Modeling and Spatial Similarity to Retrieve and Reuse Superior Plays
Plays are sequences of actions to be undertaken by a collection of agents, or teammates. The success of a play depends on a number of factors including, perhaps most importantly, the opponent’s play. In this paper, we present an approach for online opponent modeling and illustrate how it can be used to improve offensive performance in the Rush 2008 football simulator. In football, team behavior...
متن کاملA Decision-Making and Actions Framework for Ball Carriers in American Football
Instructing intelligent agents in team-based, multi-agent environments to respond to dynamic events is a lengthy and expensive undertaking. In this paper, we present a framework for modeling the decisions and behaviors of ball carriers in American Football using the Axis Football Simulator. While offensive strategies in football employ the use of prescribed plays with specific spatio-temporal g...
متن کامل